63,792 research outputs found

    Solutions of Conformal Turbulence on a Half Plane

    Full text link
    Exact solutions of conformal turbulence restricted on a upper half plane are obtained. We show that the inertial range of homogeneous and isotropic turbulence with constant enstrophy flux develops in a distant region from the boundary. Thus in the presence of an anisotropic boundary, these exact solutions of turbulence generalize Kolmogorov's solution consistently and differ from the Polyakov's bulk case which requires a fine tunning of coefficients. The simplest solution in our case is given by the minimal model of p=2,q=33p=2, q=33 and moreover we find a fixed point of solutions when p,qp,q become large.Comment: 10pages, KHTP-93-07, SNUCTP-93-3

    Supersymmetric QCD flavor changing top quark decay

    Get PDF
    We present a detailed and complete calculation of the gluino and scalar quarks contribution to the flavour-changing top quark decay into a charm quark and a photon, gluon, or a Z boson within the minimal supersymmetric standard model including flavour changing gluino-quarks-scalar quarks couplings in the right-handed sector. We compare the results with the ones presented in an earlier paper where we considered flavour changing couplings only in the left-handed sector. We show that these new couplings have important consequences leading to a large enhancement when the mixing of the scalar partners of the left- and right-handed top quark is included. Furthermore CP violation in the flavour changing top quark decay will occur when a SUSY phase is taken into account.Comment: 14 pages, latex, 3 figure

    Start-to-end modelling of a mode-locked optical klystron free electron laser amplifier

    Get PDF
    A free electron laser (FEL) in a mode-locked optical klystron (MLOK) configuration is modelled using start-to-end simulations that simulate realistic electron beam acceleration and transport before input into a full three-dimensional FEL simulation code. These simulations demonstrate that the MLOK scheme is compatible with the present generation of radiofrequency accelerator designs. A train of few-optical cycle pulses is predicted with peak powers similar to those of the equivalent conventional FEL amplifier. The role of electron beam energy modulation in these results is explained and the limitations of some simulation codes discussed. It is shown how seeding the FEL interaction using a High Harmonic seed laser can improve the coherence properties of the output

    A Characteristic Planetary Feature in Double-Peaked, High-Magnification Microlensing Events

    Full text link
    A significant fraction of microlensing planets have been discovered in high-magnification events, and a significant fraction of these events exhibit a double-peak structure at their peak. However, very wide or very close binaries can also produce double-peaked high-magnification events, with the same gross properties as those produced by planets. Traditionally, distinguishing between these two interpretations has relied upon detailed modeling, which is both time-consuming and generally does not provide insight into the observable properties that allow discrimination between these two classes of models. We study the morphologies of these two classes of double-peaked high-magnification events, and identify a simple diagnostic that can be used to immediately distinguish between perturbations caused by planetary and binary companions, without detailed modeling. This diagnostic is based on the difference in the shape of the intra-peak region of the light curves. The shape is smooth and concave for binary lensing, while it tends to be either boxy or convex for planetary lensing. In planetary lensing this intra-peak morphology is due to the small, weak cusp of the planetary central caustic located between the two stronger cusps. We apply this diagnostic to five observed double-peaked high-magnification events to infer their underlying nature. A corollary of our study is that good coverage of the intra-peak region of double-peaked high-magnification events is likely to be important for their unique interpretation.Comment: 6 pages, 3 figure

    Electronic structures of Zn1x_{1-x}Cox_xO using photoemission and x-ray absorption spectroscopy

    Full text link
    Electronic structures of Zn1x_{1-x}Cox_xO have been investigated using photoemission spectroscopy (PES) and x-ray absorption spectroscopy (XAS). The Co 3d states are found to lie near the top of the O 2p2p valence band, with a peak around 3\sim 3 eV binding energy. The Co 2p2p XAS spectrum provides evidence that the Co ions in Zn1x_{1-x}Cox_{x}O are in the divalent Co2+^{2+} (d7d^7) states under the tetrahedral symmetry. Our finding indicates that the properly substituted Co ions for Zn sites will not produce the diluted ferromagnetic semiconductor property.Comment: 3 pages, 2 figure
    corecore